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The growth and collapse of a cavitation bubble forming within the core of a line vortex
was examined experimentally to determine how the dynamics and noise emission of
the elongated cavitation bubble is influenced by the underlying non-cavitating vortex
properties. A steady line vortex was formed downstream of a hydrofoil mounted in the
test section of a recirculating water channel. A focused pulse of laser light was used to
initiate a nucleus in the core of a vortex, allowing for the detailed examination of the
growth, splitting and collapse of individual cavitation bubbles as they experience a
reduction and recovery of the local static pressure. Images of single-bubble dynamics
were captured with two pulse-synchronized high-speed video cameras. The shape
and dynamics of single vortex cavitation bubbles are compared to the original
vortex properties and the local static pressure in the vortex core, and an analysis
was performed to understand the relationship between the non-cavitating vortex
properties and the diameter of the elongated cavitation bubble. Acoustic emissions
from the bubbles were detected during growing, splitting and collapse, revealing that
the acoustic impulse created during collapse was four orders of magnitude higher than
the noise emission due to growth and splitting. The dynamics and noise generation
of the elongated bubbles are compared to that of spherical cavitation bubbles in
quiescent flow. These data indicate that the core size and circulation are insufficient
to scale the developed vortex cavitation. The non-cavitating vortex circulation and
core size are not sufficient to scale the bubble dynamics, even though the single-
phase pressure field is uniquely scaled by these parameters. A simple analytical model
of the equilibrium state of the elongated cavitation bubble suggests that there are
multiple possible equilibrium values of the elongated bubble radius, each with varying
tangential velocities at the bubble interface. Thus, the details of the bubble dynamics
and bubble—flow interactions will set the final bubble dimensions.

1. Introduction

The dynamics and acoustics of spherical cavitation bubbles have been examined
by many workers and are well understood (Brennen 1995; Leighton, Ho & Flaxman
1997). The growth, collapse and noise emission of non-spherical bubbles have also
been studied, but to a much lesser degree. Deformation of a collapsing cavitation
bubble can lead to significant reduction in the emitted noise the bubble produces
compared to the noise emitted by nearly spherical bubbles. This phenomenon has been
examined for hydrodynamic travelling bubble cavitation (Ceccio & Brennen 1991;
Kumar & Brennen 1993; Kuhn de Chizelle, Ceccio & Brennen 1995; Li & Ceccio
1996), and for laser induced cavitation bubbles (Vogel & Lauterborn 1988; Oweis,
Choi & Ceccio 2004). In many cases, consideration of spherical bubble dynamics can



2 J. Choi and S. L. Ceccio

be used to scale the noise produced by non-spherical bubbles when they are deformed
but maintain aspect ratios close to unity. The acoustic impulse generated by such
bubbles can be scaled with the bubble maximum volume and the liquid pressure
surrounding the bubble during collapse. However, if the bubbles are significantly
deformed, the noise produced upon collapse can be negligible, since the bubble
may be highly sheared, or undergo fission, and thus not achieve significant volume
accelerations (Brennen 2002). In these extreme cases, traditional scaling methods
based on spherical bubble dynamics significantly over-predict the noise produced by
the collapsing bubble.

Single highly non-spherical cavitation bubbles can form in the low-pressure core
region of strong vortices. Many workers have studied vortex cavitation, and a review is
provided by Arndt (2002). Vortex cavitation often occurs in the concentrated vortices
formed in the tip region of lifting surface or in vortices present in the turbulent flow
field associated with jets and shear layers (see, for example, O’Hern 1990; Belahadji,
Franc & Michel 1995; Maines & Arndt 1997; Gopalan, Katz & Knio 1999). Typically,
a small nucleus is present within or captured by the vortex (Oweis et al. 2005). If the
pressure in the vortex core falls below the liquid vapour pressure, the critical tension
of the nucleus can be reached, resulting in a growing vapour bubble. The bubble will
expand to a fraction of the vortex core size in the radial direction and then continue
to grow along the vortex axis. An increase in the static pressure near the bubble will
cause the elongated cavitation bubble to collapse, often leading to the production of
an acoustic pulse. In fact, engineers define the point of vortex cavitation inception to
be when these acoustic pulses are first discernable.

The scaling of vortex cavitation inception with varying nuclei distributions and
Reynolds numbers has received considerable attention (Maines & Arndt 1997; Astolfi,
Fruman & Billard 1999). Scaling of developed vortex cavitation and its resulting noise
is also a challenge (Hsiao & Chahine 2005). The relationship between the non-
cavitating vortical flow field and the resulting cavitation bubble dynamics can be
complex, and prediction of cavitation event rates and noise-production is influenced
by the process of bubble elongation and splitting. Elongated bubbles can break into
several smaller sub-bubbles before the first collapse, and this fission process can lead
to multiple acoustic emissions from the collapse of a single elongated bubble (Choi &
Chahine 2004; Hsiao & Chahine 2005). The resulting acoustic impulse frequency
spectra and intensity of the noise produced by the collapse may not be predicted easily.

Experimental observations of naturally occurring vortex cavitation bubbles are
made difficult by the stochastic nature of vortex cavitation. It can be difficult to know
where the bubble will first occur in the vortical flow. Arndt & Maines (2000) employed
both high-speed movies and single-image flash photography to capture detailed images
of naturally occurring vortex cavitation. The camera flash was triggered as individual
cavitation bubbles intersected a laser beam placed in the region of expected bubble
formation. Another method of studying the details of cavitation bubble dynamics
is the formation of a nucleus by a spark or focused light-source with synchronized
image-capturing devices to observe the bubble or bubbles. The use of a light pulse
for nuclei formation is advantageous for the study of vortex cavitation since the light
will not disturb the underlying flow. Oweis et al. (2004) measured the noise pulse
and spectra associated with single laser-induced cavitation bubble events as they
occur within the core of a vortex. The energy deposited was sufficient to cause the
growth of a cavitation bubble even when the pressure in the vortex core was above
vapour pressure. The rapid growth and collapse of individual cavitation bubbles was
observed, and the noise produced by the collapsing bubbles was successfully scaled
with spherical bubble dynamics when the bubbles were not highly deformed.
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FIGURE 1. Schematic diagram of the Venturi in the water tunnel test section; the location of
the hydrofoil and the laser-induced bubble are also illustrated. The fields-of-view of the two
high-speed cameras are shown. Dimensions are in mm.

In the present work, we produce elongated bubbles experimentally in the core of
concentrated vortices and examine their growth, splitting and collapse. Our goals are
two-fold: (i) we wish to examine how the non-cavitating vortex properties influence
the inception and dynamics of the single vortex cavitation bubbles and (ii) we wish
to examine how these dynamics lead to the production of noise.

Detailed measurements are achieved by initiating a small nucleus in the vortex core
with a focused pulse of laser light (see figure 1). A vortex is formed downstream of a
hydrofoil, and the vortex passes through a contraction in order to achieve a reduction
and recovery in overall pressure. A nucleus is created well upstream of the inception
point. The small bubble convects into the low-pressure region where inception occurs.
The bubble then grows along the axis of the vortex until it convects into the region
of pressure recovery where it will collapse. Observation of the bubble dynamics is
accompanied by the measurement of the noise emitted by the bubble.

With this data, we examine how variation in free-stream conditions and vortex
properties influence the bubble dynamics and noise production, including the process
of bubble fission. Ideally, the characteristics of the non-cavitating vortical flow can
be used to scale the dynamics of the individual cavitation bubbles, although we will
show below that this is not the case. We also explore how the growth, fission and
collapse of the bubbles can lead to the creation of an acoustic pulse, and we will
compare the noise produced by the deformed cavitation bubble with that produced
by the collapse of near-spherical bubbles.

2. Experimental set-up

2.1. Flow facility and set-up
The University of Michigan 9 in. water tunnel was used to conduct these experiments.
The tunnel has a circular contraction downstream of a series of flow management

screens with area contraction ratio 6.4:1. The test section has a 22.9 cm (9 in.) diameter
round inlet that is then faired into a rectangular test section with widely rounded
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FIGURE 2. A schematic plan view of the test section with the stereo PIV set-up. The light
sheet making optics, prisms and cameras with Scheimpflug lens mounts are shown. Light sheet
location 1 was 10 mm upstream of the Venturi inlet, and location 2 was 110 mm downstream
(not shown).

corners. The maximum test-section inlet flow velocity is 18 ms~!, and the test section

static pressure can be varied from near vacuum up to 200 kPa. The tunnel holds 3.8 m*
(1000 US gallons) of water that can be deaerated to 10 % saturation at atmospheric
pressure. Further details regarding the water tunnel are reported in Oweis et al. (2004).

A vortical flow is created using a cambered hydrofoil with a non-standard cross-
section mounted to one window of the test section. The hydrofoil has a rectangular
platform of 9.5cm span and 16.6 cm chord with a rounded tip. Two hydrofoils were
manufactured and then modified in the following ways: a wire was attached along
the chord near the tip, and the suction side of one hydrofoil was roughened. The
incident flow angle was varied from 4.0° to 4.5° to vary the vortex circulation and
core size. Vortices are formed and shed near the hydrofoil tip, and these vortices
merge to form a single vortex within half a chord length downstream of the trailing
edge. A Venturi section (figure 1) was mounted 21 cm downstream of the trailing edge
to produce a reduction and recovery of the flow static pressure. The area of the test
section upstream of the Venturi is 0.0378 m? and reaches a minimum of 0.0331 m? at
the Venturi throat, yielding an area reduction of 12 %. Four acrylic windows permit
optical access to the test section flow.

Measurements of vortex cavitation were undertaken with free-stream velocities U,
in the range of 9.7 to 10.3ms™! and a variety of static pressures, P,.. The Reynolds
number of the flow based on the free-stream velocity (U,,) and hydrofoil chord length
Co (Re=U,,Cy/v) ranged from 2.01 x 10% to 2.14 x 10°, where v is the liquid kinematic
viscosity. Six pressure taps are installed on the top window to monitor static pressures
for six locations upstream, within and downstream of the Venturi. An Omega PX203
pressure transducer was used to measure the absolute pressures at the taps. The free-
stream air content was maintained below 20 % saturation at atmospheric pressure
(oxygen concentration measured with Orion dissolved oxygen meter Model 810).

2.2. Flow visualization

Stereo particle imaging velocimetry (SPIV) was used to measure the vortical flow
field at a location 1cm upstream of the Venturi inlet and at 10cm downstream
of the Venturi inlet (figure 2). A double-pulsed light sheet 5Smm thick was created
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perpendicular to the mean flow direction with two pulsed Nd:YAG lasers (Spectra
Physics model Pro-250 Series), and three cylindrical lenses (60 mm, —150 mm and
200 mm focal length). Acrylic prisms were optically mounted to side windows of the
test-section for viewing of the light sheet with reduced optical distortion. Double-
pulsed images of the light sheet were acquired with two digital (LaVision FlowMaster
3S) cameras recording an image with 1280 x 1024 pixels. Two 50 mm Nikon lenses
were used with Scheimpflug mounts to reduce optical distortion and aid in focusing
on the light sheet. Optical distortion of the planar light-sheet images was corrected
through a calibration procedure that employed the imaging of a regular grid (crosses
separated by 4 mm) that was traversed in the streamwise flow. The grid was immersed
in water during calibration. The flow was seeded with 15.3 um average diameter
silver coated glass spheres (Potters Industries). Velocity vectors were produced from
the double-pulsed images using the LaVision image analysis software DaVis 6.0.4.
Multi-pass processing with a final window size of 16 x 16 pixels was used with 50 %
window overlap in the final pass to produce 159 x 97 in-plane velocity vectors at
0.56 mm spacing. The camera-imaging plane was not parallel to the light sheet, and
it had an angular shift of 40° with the horizontal direction. The average vortical
flow field was determined after processing and averaging 1000 individual vector fields.
Oweis & Ceccio (2005) discussed the implication of vortex wandering on the averaged
vortical flow field. The wandering of the single vortex in the present experiment
was considered negligible. The uncertainty in the in-plane velocity measurements is
estimated to be +3 % whereas the out-of-plane component is estimated to be +6 %.

2.3. Single nucleus production

Single cavitation bubbles were controllably produced in the core of the line vortex
through the optical initiation of a small nucleus upstream of the Venturi (figure 1).
Laser-induced bubbles were generated by optical breakdown near the axis of the vor-
tex 10 mm before the inlet of the Venturi. A Q-switched Nd:YAG laser (Spectra Phys-
ics PRO 250) producing 10 ns light pulses with a maximum energy of 280 mJ at the
1064 nm wavelength was focused at the vortex centreline. The laser energy was reduced
to the threshold necessary to create a single nucleus, and, by varying the free-stream
pressure and laser energy, the initial size of the laser-induced nucleus could be approx-
imately controlled (Tomita, Tsubota & Annaka 2003). The nucleus is a small bubble
consisting of vapour and non-condensable gas that results from diffusion, plasma
recombination, and chemical reactions. The free-stream dissolved gas content was kept
below 20 % saturation, significantly decreasing the number of free-stream nuclei, and
only rarely would a naturally occurring nucleus produce a vortex cavitation bubble.

2.4. Acquisition of bubble images

Images of the vortex cavitation bubbles were acquired with two 8-bit Phantom V9.0
high-speed movie cameras (figure 1). These cameras were set to an effective resolution
of 1632 x 104 pixels at a frame rate of 8000 frames per second with a 15 ps exposure
time. 50 mm Nikon lenses with 12 mm extension rings were used. Each camera has
a 70 mm x 4.5 mm viewing area, and the fields of view were overlapped by 10 mm in
the streamwise direction. A set of four 300 W incandescent lights was installed
opposite the camera, and a light diffuser was used to prevent glare on the imager. A
pulse delay generator (Stanford Research Systems model DG535) was used to trigger
the camera with varying delays from the laser pulse that created the nucleus. These
movie images were recorded digitally for post-processing.
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2.5. Acoustic measurements

A high-bandwidth hydrophone (Briiel & Kjer Model 8103) was used to detect the
cavitation noise created by the bubbles in the vortex. This hydrophone has an upper
frequency limit of approximately 180 kHz. The hydrophone was mounted inside the
small water reservoir, and placed on the top window of the test section, and the con-
tainer was placed in a pool of water on top of the window to enhance the transmission
of the acoustic pulses. This hydrophone was placed above the average location of
bubble collapse, and the distance between the hydrophone and the bubble collapse is
about 30cm. Signals from the hydrophone were conditioned with a charge amplifier
(Briiel & Kjer Model 2635), and digitally acquired using an oscilloscope sampling at
250kHz with a record length of about 40 ms (TekTronix Model TDS430A).

3. Results — vortical flow field
3.1. Analytical treatment of the vortical flow field

The tip vortex created by the hydrofoil rolls up within one to two chord lengths
downstream of the hydrofoil trailing edge. The velocity and pressure upstream of the
Venturi are U, and P,. The streamwise position is z, and the radial distance from
the vortex axis is r. We will assume that the flow near the vortex is axisymmetric,
although this will be revisited below. The flow in the plane orthogonal to the vortex
axis can be approximated by a Gaussian vortex where radial velocity distribution of
the vortex is given by:

T 1~ expl—atr/ret2)). ()
Here, @ =1.255 which makes r¢ the ‘core radius’, defined as the radius where the
tangential velocity is maximum. Both the core size and vortex strength, Iy, are
potentially functions of z. The maximum tangential velocity is then given by
I'o

2nre’

ug(r,z) =

ug(re,z) = p (3.2)

where g =0.715.
The pressure in the core of the Gaussian vortex is given by
0

P(r, z)—P(z)=/ —””f(” dr

0

ro \’( 1 ) )
(30 ) (5 rege ) 1+ 2ex0atr/rc ) — expt=2atrrc )

21re r/re)
—2a(r/rc)’ Eila(r/rc)’) 4 2a(r/rc ) EiQ2a(r/rc)?)] (3.3)

where Ei(x) is the exponential integral function, and P(z) is the pressure at position
z far from the vortex axis. The pressure at the vortex centreline is given by

2
Pc(z) — P(z) =—77< I'o ) ’ (3.4)

0 2nrc

where 1 =0.870.

The vortex may also have an axial velocity component that can also be described
with a Gaussian profile, and it is expected that the axial velocity of the vortex core
will change as the vortex passes through the Venturi. The streamwise velocity on the
vortex axis is Uc(z). If there is a non-uniform axial velocity at the centre of the vortex,
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Uc(z), the core pressure will be given by

Pe(z)— Py ro\* U2 Uc\’
e = h _—n(zm) +2[1_(Uw) ] (3.5)

Darmofal et al. (2001) examined the flow of a Rankine vortex through an axisymmetric
duct of varying cross-section, and used mass and energy conservation to derive a
relationship between the Rankine vortex core area given the variation in the duct
area and the inlet flow parameters:

2 2
2 ( | >+<Uw/vc,w<1—am/Aw>) =9;—1+<U“’ ) (36)

a(x)/A.  \a(2)/A, AR)/ A, —a(2)/A, Uc
where A(z) is the duct area, a(z) is the vortex core area, and
@, =tlred) g lo 1 (3.7)
UC,u: 21trc UC,oo

is the Swirl number of the inlet vortex in the Gaussian vortex. Here, the subscript oo
denotes the value at the inlet of the Venturi and the subscript C denotes the properties
at the axis of the vortex, r =0. Darmofal et al. (2004) assume the streamwise velocity
of the vortex core to be uniform. They also assume that the flow is inviscid and,
consequently, that the vortex circulation is constant. We will use this relationship to
estimate the local magnitude of the streamwise velocity in the vortex core as it passes
through the Venturi to determine its influence on Pc(z). We define the free-stream
cavitation number as

o Poo - PV

VI

The local cavitation number on the axis of the vortex is defined with the vortex
properties upstream of the Venturi inlet, I’y and r¢:

_ Pc—Py
1p(Blo/2mrc)?

where By /(2nrc) is the maximum tangential velocity of the Gaussian vortex. The
local cavitation number then is given by

_ 277 27'[ch@ 2 Uc 2
JC(Z)——I32+< A > {1—<Uw> +ax} (3.10)

Inception in the core of the vortex can occur when Pc < Py or o¢ < 0.

(3.8)

oc(z) (3.9)

3.2. Measurement of the vortical flow field

Stereo PIV was used to measure vortical flow upstream of the Venturi inlet and in the
throat of the Venturi in order to determine the strength, core size and axial velocity
of the vortex upstream of the Venturi inlet and near the point of cavitation inception
in the Venturi throat. Figure 3 shows the circumferentially averaged radial flow
fields for the average vector fields with a fitted Gaussian radial velocity profile and a
residual function, iig(r), that is the difference between the fitted Gaussian profile and
the experimental data (to be discussed in §3.3). Figures 3(a) and 3(b) show the flow
of the vortex for the case of the hydrofoil with the trip, and figures 3(c) and 3(d)
show the flow for the hydrofoil with roughness, all with U,, =10ms~'. The tip vortex
upstream of the Venturi inlet is nearly axially symmetric. These and similar flow fields
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FIGURE 3. Average circumferential velocity, uy(r), derived from 1000 vector fields in the plane
perpendicular to the line vortex. Conditions are defined in table 1. The measured circumferential
velocity profile is fitted with a polynomial and compared with a fitted Gaussian velocity

profile. The residual function shown is the difference between these two profiles. (a) T1, (b) T2,
(c) R1, (d) R2.

a=4° (1) a=4.5° (2)
Iy (m?s7) re (mm) o (m?s™) re (mm)
Foil with trip (T) 0.252+0.015 476 +0.31 0.288 +0.018 5.154+0.35
Foil with roughness (R) 0.25740.013 3.7540.02 0.3024+0.015 4204+0.23

TaBLE 1. Experimental conditions for the vortex properties in the Venturi with two different
hydrofoil configurations. The vortex properties were identified from 1000 individual vector
fields; U, = 10ms~'. The four conditions are referred to as T1, T2, R1 and R2.

were used to determine the circulation and core size of the vortices under varying
conditions. The properties of the fitted Gaussian profiles are presented in table 1.
The circulation and core size from each individual flow field were determined, and
these values were then averaged to determine the mean value and uncertainty stated
in the table. The effect of vortex wandering was not significant, as the variation of
the identified position of the vortex axis, |AX|/rc, varied less than 6 % (see Oweis &
Ceccio (2005) for a discussion of vortex identification and the effects of wandering).
We will hereinafter refer to the four flow conditions as T1 and T2 for the foil with
the trip, and R1 and R2 for the foil with roughness. A number of different free-
stream pressures will be applied to vary the cavitation number along the vortex core
for these four flow conditions. The streamwise (out-of-plane) velocity was nearly
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FIGURE 4. (a) The estimated pressure coefficient, Cp =(P — P)/ %pUi, in the Venturi as a

function of position along the centre of the Venturi, z/L. (b) The normalized duct area,
A(z)/ A, as a function of distance. A(z) is the actual duct area, and Ag(z) is the effective duct
area.

uniform, indicating that the vortex upstream of the Venturi inlet did not have an
axial velocity deficit or surplus, within the uncertainty of the measurement.

SPIV measurements were also performed in the Venturi throat. Measurements in
the throat did show some variation in circumferential velocity at a given radius owing
to the asymmetry of the Venturi. The circulation of the vortex was conserved within
experimental uncertainty. Also, these data indicated that the axial velocity of the liquid
in the vortex core was approximately 3 % higher than the axial velocity of the fluid
outside of the core. However, the limited resolution of the axial velocity component
measured with the SPIV rendered this direct measurement of the axial velocity too
uncertain to be used in the overall estimate of the core pressure. Therefore, we used
the relationship of Darmofal et al. (2001) (equation (3.6)) to estimate the core velocity
and pressure all along the vortex axis. The computed core velocities presented below
were qualitatively consistent with the SPIV measurements in the Venturi core.

3.3. Inferred pressure in the vortex core

We will now estimate the pressure in the vortex core as it passes through the Venturi
using both the measured flow-field data and the estimated core acceleration. The
pressure will be modified by changes in the pressure away from the vortex core
(i.e. pressure changes due to the bulk flow through the Venturi) and by additional
acceleration of the streamwise flow in the vortex core. First, the influence of the
Venturi area change and frictional losses on the pressure field experienced by the
vortex were estimated. Figure 4(a) presents the estimated pressure coefficient,

P(Z)_Poc

Cp(z) = : 3.11
r(2) 102 (3.11)

where P(z) is the local pressure in the Venturi, away from the edge of the vortex core.
The pressure coefficient is calculated using the measured pressures and the physical
duct area, A(z). The head loss coefficients for the three regions in the Venturi were
matched with the measured pressures, and the pressure in the contraction of the
Venturi is given by,

P(z/L)— P, = Ccip(U; —U*(z/L)) (0 <z/L <0.2). (3.12)
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FiGure 5. The computed average axial velocity of the vortex core as a function of axial
distance through the Venturi. U(z) is the average velocity in the Venturi, and Uc(z) is the
average core velocity. Conditions are given in table 1.

The pressure in the throat with head loss due to friction is given by,

P(z/L)— P(0.2) = CsipU?(z/L)  (0.2<z/L <0.5). (3.13)
Also, the pressure in the diffuser is given by,
P(z/L)— P(0.5) = Csip(U*(0.5) — U*(z/L)) (0.5 <z/L <1). (3.14)

The head loss coefficients were determined from the measured wall pressures along
the Venturi: Cc=1.01, Cs=0.005 and Cp =0.675. Lastly, these data were used to
compute the effective cross-sectional area of the Venturi, Ag(z), for use in evaluating
equation (3.6). The physical Venturi cross-sectional area and the effective cross-
sectional area are shown in figure 4(b).

The average vortex core velocity was calculated from the vortex core area, a(z),
which results from the solution of equation (3.6). Figure 5 presents the average stream-
wise flow velocity through the Venturi, U(z), and the estimated vortex core velocities,
Uc(z), for the four conditions in table 1. The extent of the calculated streamwise core
velocities, [Uc(z) — U(z)]/U(z), varies from 1.5 % to 5 %. These modest increases are
within the uncertainty of the SPIV measurement, but are consistent with the observed
positive acceleration of the vortex core flow in the Venturi throat.

While seemingly small, these changes in the core radius will lead to appreciable
changes in the vortex core pressure. Equation (3.5) was then used to compute the
pressure coefficient along the vortex axis:

_ Pc@)—P, 2y (2mrcUl\’ Uc\’
Cre@ =1 s ry/mrcy __ﬂ2+< Blo > {“(u,) ] G13)

The results are shown in figure 6. The second term on the right-hand side accounts
for the local increase of the axial velocity inside the vortex core. If there were no local
increase of the axial velocity inside vortex core, then Uc(z) = U(z) and the change in
pressure coefficient would be due solely to the average pressure change of the flow
in the Venturi. The lowest pressure occurs in the core of the vortex at the exit of the
Venturi contraction.
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FIGURE 6. The estimated pressure coefficient at the vortex axis as a function of axial distance
through the Venturi. Conditions are shown in table 1; Cp.c = (Pc(z) — Py)/(0(BL 0 /(2nre)? /2).

It is worth noting that the inlet velocity profiles are similar to but not identical
to the Gaussian velocity distribution (figure 3). The rate at which the radial velocity
decays is slower than the rate predicted by the Gaussian model. However, this effect
has only a small influence on the core pressure. The radial velocity data in figure 3
can be represented by the sum of a Gaussian vortex (equation (3.1)) and a residual
function, iig(r), as illustrated in figure 3. The contribution of Zi4(r) to the computed
core pressure can be determined by integrating the Euler equation as in (3.3). For the
vortices studied here, the change in the estimated core pressure coefficient, Cp c(z),
is less than +1 %, and thus the influence of the non-Gaussian tangential velocity
components is negligible.

4. Results
4.1. Examples of individual vortex cavitation bubbles

The cavitation bubbles in the core region of the vortex develop according to the
following steps. First, the nucleus created by the laser pulse convects into a region
where the flow is in tension (i.e. negative pressure). If the tension is sufficiently strong,
the nucleus will grow explosively. The critical radius along the vortex axis of a small
clean gas bubble, Rc(z), is approximately given by

45
3Rc(z)

where S is the surface tension (Brennen 1995). The nuclei created by the laser typically
cavitate when the pressure in the core is between —2kPa < P-(z) < 0kPa suggesting
that the critical radii of the nuclei are of the order of 10 to 100 um. The pressure
profile along the vortex axis does not change for fixed flow conditions. However, the
size of the cavitating nucleus does vary. This leads to variation in the nuclei’s critical
pressure and therefore the location of inception. Arndt & Maines (2000) discuss
this effect in the context of ‘weak’ and ‘strong’ water after observing the location of
tip-vortex inception downstream of a series of elliptic hydrofoils. In the experiment
by Arndt & Maines (2000), a tip vortex was rolling up downstream of the hydrofoil,

< Py — Pc(z2), (4.1)
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and the position of minimum core pressure existed at a fraction of a chord length
downstream. In weak water, there were relatively large nuclei that cavitated when
the core pressure just reached vapour pressure near the point of vortex formation at
the tip of the hydrofoil. Stronger water had fewer, smaller nuclei, and a significant
tension must be present before they incept. In these cases, inception took place farther
downstream of the foil tip where the vortex had completed rolling up. Similar nuclei
size effects were manifest in the present study. Because the laser light pulse produced a
range of nuclei sizes, the position of inception occurred over a range of axial locations
and hence tensions.

The bubble will usually retain its cylindrically elongated shape until it convects into
the region of pressure recovery. Figure 7 presents examples of the growth and collapse
of cavitation bubbles for each of the four vortex conditions of table 1. A time series
of bubble images is shown, and these images are used to determine the radius of a
circle that encloses the cross-section of the elongated bubble, where the cross-section
is perpendicular to the axis of the elongated bubble and length history of the bubbles.
The volume is also computed after measuring the local bubble radii and employing the
assumption of bubble axisymmetry. Also presented is the accompanying hydrophone
signal created by the bubble during inception, splitting and collapse. The cavitation
numbers of the flows were selected such that bubble growth and collapse would largely
take place in the camera field of view. The bubbles formed in the vortices share some
general features. The growing nucleus begins as a nearly spherical bubble. It then
becomes ellipsoidal and ultimately elongated as the extent of the bubble growth in
the radial direction is arrested by the increase in pressure away from the vortex axis.
The bubble continues to grow along the axes of the vortex while the pressure on the
vortex axis remains below vapour pressure, and depending on the duration that the
bubble is in tension, the length of the bubble can grow to many times its diameter.

During this period of elongation, disturbances can exist on the bubble interface as
it slowly revolves about the bubble axis, and these surface waves can lead to volume
oscillations of the bubble and the local fission of the bubble. Then, as the pressure
rises, the bubble begins to collapse. The rate at which the bubble surface collapses can
vary in the radial and axial directions. Under some conditions, the collapsing bubble
may fission to form smaller, nearly spherical sub-bubbles at its ends. Or, the bubbles
may split into multiple bubbles when the core pressure changes from tension to posi-
tive pressure. Pulses of noise are often, but not always, associated with bubble
growth, fission and collapse. The bubble shape and size is a function of both the
vortex properties and the free-stream cavitation number. The location where the
vortex core pressure falls below vapour pressure will vary with the vortex properties
and the cavitation number. But, for the cases examined here, the region of tension
begins near the end of the Venturi throat. In some cases, images of the bubble collapse
were captured by the high-speed imaging, whereas in others, the bubbles collapsed
outside the cameras’ field of view.

4.2. Average bubble radius and length

Figures 8 and 9 present the average length and radius of the observed bubbles for
varying cavitation number and vortex properties. A hundred individual images for
each case were averaged. The magnitude and extent of tension (e.g. negative fluid
pressure) that the bubbles experience will vary with the cavitation number. For most
of the cases, the bubbles begin to grow in the range 0.4 <z/L <0.5. The growth of
the bubbles in the radial direction is rapid. Initial bubble radial growth and final
collapse occur over a very short time interval that is usually shorter than the framing
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FIGURE 7. Images of individual cavitation bubbles taken from a video record to illustrate the
bubble shape history and have varying time intervals. The video record was used to compute
the length and average radius of the bubble as a function of position within the Venturi. Also
shown are the corresponding acoustic signal detected from the hydrophone; (a) T1, o, =1.74,
(b) T2, 0, =1.74, (¢) R1, 0, =2.75, (d) R2, 0,,=2.95.
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(c) R1, (d) R2.

rate of the camera. Therefore, the data in the figure 9 correspond to measurements
after the bubble has undergone its rapid initial growth. This is seen in figure 9, where
the maximum extent of the cylindrical bubble’s radius usually occurs near z/L =0.5,
the position of highest tension is at the exit of the Venturi throat, and the magnitude
of the radius begins to decrease as the bubbles convect into the pressure recovery
region. Examination of the bubble length shows that the bubble continues to grow
along the axial direction even as the pressure is increasing. The axial growth of the
bubble is arrested around z/L =0.7, and then the bubble begins to contract.

The data from figure 6 were used to determine oc(z), and the average bubble
characteristics were plotted as a function of the local core cavitation number. The
difference in oc(z) based on the different choice of axial locations is small compared
to the propagated uncertainty in o¢(z) owing to the variability in the vortex properties
and estimated core axial velocity and the free-stream measurements. The total uncer-
tainty of o¢(z) was estimated to be +15 %. This is calculated from the uncertainty of
tangential velocity measurement and the measurement of the wall mean pressures.

Figure 10 presents the bubble radius as a function of o¢(z). Note that the bubble
radius is finite even when o¢(z) > 0. This occurs because a finite time is required for
the bubble to collapse after the bubble convects into a region of higher pressure. When
the elongated bubbles convect in a region of high tension, the radius of the bubble
does not change very much, the ratio of r,/rc falls in the range 0.05 <r,/rc <0.15.
The observation that the bubbles are a small fraction of the viscous core radius was
also observed by Arndt & Maines (2000).
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The diameter of a cylindrical bubble in a two-dimensional vortex has been pre-
dicted analytically for a Rankine vortex by Arndt & Keller (1992). They employed
conservation of angular momentum to show that the radius of the vapour bubble
would be r,/re =1/ \/5 or 71 % of the initial core radius. However, it was acknow-
ledged that the observed bubbles were significantly smaller in radius, as in the present
study. Following this analysis for a Rankine vortex, we can examine the placement of a
vapour cylinder in the core of a Gaussian vortex. The non-cavitating Gaussian vortex
is defined with I'p and r¢. The liquid flow field of the cavitating vortex, however, can
take on any profile and need not be Gaussian. We can define a Gaussian like profile
in this case,

I
walr. ) = 5 M = exp(alt — ym /G —yrP) (42)
where Ip;, rcp and y are parameters of the cavitating vortex. The parameter y
can vary in the range 0 <y < 1. When y =0, the liquid velocity profile is the same
as that of a single-phase vortex, where the maximum tangential velocity will occur
at r =r¢, and vapour occupies the region 0 <r <r,. The tangential velocity at the
bubble interface would be finite with the value

o) = 5 (1~ exp(=aln(l = )/ e — ). (43)
(1 —y)
Conversely, if y =1, the tangential velocity at the bubble interface is zero. Lastly,
the bubble contents are at vapour pressure, prescribing a boundary condition on the
bubble surface.

We wish to determine the elongated bubble radius, r,, as a function of the three
non-cavitating vortex flow parameters: Iy, rc and oc. The cavitating vortical flow
is described by three parameters: Iy, rcp, and y. Therefore, four relationships are
required to close the problem.

Conservation of angular momentum, X, provides one relationship:

Y= ,0/ 2mr2ug dr. (4.4)
0

We will assume that the growth of the bubble does not lead to torque on the liquid.
Secondly, we will consider the conservation of kinetic energy:

r>re
KE = p/ 2nru§ dr. (4.5)
0

The integral of the kinetic energy is not bounded as the limit of integration becomes
large. Therefore, we will select a finite upper limit of integration of 10r.. Further
increases of this limit are found not to change the solution. Note that the kinetic
energy is not strictly conserved. The kinetic energy of the bulk fluid will be changed as
the growing bubble works against the fluid. We will assume that the boundary work
is negligible, since the work done by the expanding bubble is one to two orders of
magnitude smaller than the total kinetic energy. We make this estimate assuming that
the bubble is expanding against a constant pressure equal to vapour pressure. The
actual work that the bubble performs on the fluid, however, depends on the volume—
pressure history of the growing bubble. Nevertheless, the assumption that there is no
loss or gain of kinetic energy in the liquid owing to the growing bubble is reasonable.

Thirdly, the pressure at the bubble boundary under equilibrium conditions is vapour
pressure, and this provides the last condition. The Euler equation can be integrated
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FIGURE 12. The calculated tangential velocity profile of a two-dimensional Gaussian vortex
with a bubble at the axis. The tangential velocity is normalized by maximum tangential
velocity of the flow without the bubble present, and radial dimension is normalized by the
non-cavitating vortex core radius. Calculations (a) for y =0.6 and (b) y =1 are shown.

to relate the pressure at the bubble interface to the pressure far from the vortex, as in
(3.3). A fourth conservation relationship was not employed. Instead, y is considered
to be a free parameter.

Figure 11 presents the resulting bubble radius as a function of cavitation number for
a range of y. Also plotted are the experimental data from figure 10 corresponding to
the observations where the bubbles are in a region of tension and the radius has ceased
to vary. The data suggest a value of 0.6 <y < 1. Figure 12 shows tangential velocity
profiles for the cases of y =0.6 and 1. In both cases, the tangential velocity of the
bubble interface is small, reaching about 10 % of the maximum tangential velocity of
the non-cavitating vortex. In the present experiments, this would be around 0.3 ms™!
for the average cavitation numbers examined, and this is similar to the observed
rotation rates of between 0.2 and 0.4 ms~'obtained from examination of the bubble
movies. The variation in the equilibrium r,/rc for the different vortex properties
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vortex axis for varying free-stream cavitation numbers. Conditions are given in table 1. (a) T1,
(b) T2, (c) R1, (d) R2.

suggests that the value of the tangential velocity at the bubble surface (related to
y in the model) may not be uniquely determined for any single vortex, but is the
product of the detailed history of the bubble growth. In this case, r,/r¢ is not simply
related to the ratio I'p /2mrc that scales the radial pressure field of the non-cavitating
flow. We also examined laser-induced single vortex cavitation bubbles without the
Venturi. Inception occurred immediately downstream of the laser pulse location, and
the bubble grew in the axial direction to fill the vortex core. The equilibrium bubble
radii of these elongated bubbles also ranged between 0.08 and 0.18 with o¢ from —0.1
to —0.25. These results are similar to the radii measurements for the bubbles passing
through the Venturi. Hence, the axial pressure gradient present in the Venturi flow
had little effect on the equilibrium bubble radius.

Figure 13 presents the average bubble aspect ratio as a function of o¢(z). These
data show that the bubbles quickly become elongated once inception has taken place.
As is the case for r,/rc, the bubble aspect ratios are not simply related to the vortex
properties and the cavitation number history (i.e. the data are not collapsed by these
quantities alone). Bubbles with aspect ratios of over 50 were observed. Figure 14
presents the normalized bubble volume computed with the assumption of axisym-
metry. The volume of the elongated bubbles are compared to a spherical bubble with a
radius equal to the vortex core radius. The maximum normalized volumes vary widely
from 0.02 to 0.3 times the volume of a sphere with radius equal to the core radius.

4.3. Dynamics and splitting of the bubbles

The rate of bubble growth and collapse was also examined. Because of the limited
frame rate of the imaging system, we were limited to measuring the slower bubble
motions that occur immediately after inception. At inception, the expansion of the
nucleus is very rapid, especially if the nucleus was small and incepted in a region of
high tension. Expansion of the near-spherical bubble to its largest radial extent would
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FIGURE 14. The average bubble volume as a function of the cavitation number at the vortex
axis for varying free-stream cavitation numbers. Conditions are given in table 1. (a) T1
(b) T2, (c) R1, (d) R2.

take place in less than one frame of the movie image spanning 125 ps. This would
make the average incipient radial velocities of the order of 10ms~!, although the
bubble wall velocity and acceleration at the moment of explosive growth are much
higher. This is illustrated in figure 7, where the explosive growth of the smaller nuclei
(occurring farther downstream in the throat) would produce explosive growth and an
accompanying acoustic pulse. The growth of larger nuclei would be slower since they
grow with lower tension, and the acoustic pulse they created had lower magnitude.

Figure 15 presents the axial bubble velocities as a function of the local cavitation
number. The axial growth rate (L > 0) also increases at lower cavitation number with
higher tension. The trends of decreasing axial collapse rate with increasing cavitation
number results from the dynamics of the bubble in the pressure recovery region of
the Venturi. Here, the highest cavitation numbers occur when the bubble is near its
minimum volume immediately before the final collapse.

Arndt & Maines (2000) analysed the process of axial bubble growth in order to
scale the growth rate with the driving pressure. They derived an equivalent expression
of the Rayleigh—Plesset equation for bubble growth in the axial direction assuming
a value of the apparent mass of the axially growing bubble that was proportional
to the displaced volume of the bubble. They concluded that the rate of axial bubble
growth scales with the differential driving pressure,

Lb~/<1/2(PCp_PV)=K</23n];Z>\/%. (4.6)

Arndt & Maines (2000) showed that x =2/ _/c,, for the near-spherical bubbles, where
¢ 1s the added mass coefficient scaling the displaced bubble volume. A value of
k ~2.1 was determined from experimentally observed bubble growth for the near-
spherical bubbles. Near the point of inception, the radial growth rate of the bubbles
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(a) T1, (b) T2, (c) R1, (d) R2.

is the largest and of the order of 10 ms~!. This is consistent with a value of « of two
or greater. Figure 16 presents the normalized axial growth rate. The bubbles that are
highly elongated with a nearly unchanging radius indicate that « ~ 1 for the bubble
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FiGUure 17. The probability of bubble splitting as a function of the cavitation number at the
vortex core. (a) T2, (b) R1.

growth rate in the axial direction. These data suggest that the added mass coefficient
for the axially expanding bubble is probably not a constant, but varies with the aspect
ratio of the bubble.

As the bubbles grow and collapse, perturbations on the gas—liquid interface form.
These surface disturbances can lead to fission of the elongated bubbles. Moreover,
during collapse of the bubble, the difference between the radial and axial collapsing
rates can lead to the pinch-off of sub-bubbles at the extreme end of the bubble, as
shown numerically by Choi & Chahine (2004). Examples of such splitting events can
be seen in figure 7. Figure 17 shows the probability that a bubble will split based
on the local cavitation number. Bubbles were observed to split, even when they were
largely in regions of tension, and this is due to the presence of disturbances on the
bubble interface. However, the highest likelihood of splitting occurs when the pressure
surrounding the bubble is larger than vapour pressure, and the bubble has initiated
the process of collapse.

4.4. Noise produced by bubble growth, splitting and collapse

The noise produced by individual cavitation bubbles was recorded to determine
which bubble processes led to the production of measurable noise. A discussion of
the noise produced by slightly deformed bubbles in a vortex and the challenges of
measuring such noise is presented in Oweis et al. (2004). A brief summary will be
provided here. The sharp pressure pulse created by a collapsing cavitation bubble
may be approximated as P,(r,t)= Pse~"/?, and the pulse widths can be very short
for highly focused collapse. Pulse widths measured with optical and piezoelectric
transducers are of the order of 10 to 100ns (Vogel & Lauterborn 1988). The peak
amplitude of the response will be proportional to Ps, and the initial pulse width will
be proportional to 1/w,, the natural frequency of the hydrophone, if 1/, > 6. The
measured pulse widths were typically 10+ 2 us~ 1/w@,, which is consistent with the
reported hydrophone natural frequency used in the present study. The actual acoustic
impulse will be approximately I(ry)= Ps(rg)0(rg) at the location of the hydrophone,
ry. The measured acoustic impulse, 7, will scale as

Ps(ru)

n

L,(ry) = O(ry)m, = Ps(ry)f(ry), (4.7)
based on the dynamic impulse response function of the hydrophone. However, the
measured peak pressure and the pulse duration will be approximated by Ps(rg)
O(ry)w, and 1/w,, respectively. The maximum bubble volume accelerations achieved
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and the resulting amplitude and time scale of the emitted pressure wave is affected
by the amount of non-condensable gas in the cavity, the collapsing pressure (A P),
and the topology of the collapsing bubble.

The maximum mechanical potential energy of the bubble may be used to scale the
acoustic impulse produced by the collapsing bubble, E,,

Ey = %mrj , AP. (4.8)
The energy radiated from the bubble after the collapse and rebound, E, is given by

Anr? [
Ex(r) = np - / P2dr, (4.9)
pc Jo

where ng is the proportion of mechanical potential energy that is converted into
acoustic energy. Vogel & Lauterborn (1988) have shown that up to 90 % of a bubble’s
mechanical energy can be converted to acoustic energy during the first collapse
of spherical laser-produced cavitation bubbles, but the percentage can be reduced
substantially if the collapsing bubble is non-spherical. The measured peak shock
pressure, Pg, is expected to scale with the maximum potential energy:

1 Ex\'"* 1 Ey\"?
Po~ — (PEERY) L (NMRPCEM) (4.10)
2VH o 2}"[-1 mo
The acoustic impulse would then scale as
1 Ew0\'"? 1
L(ry) ~ 5— (’WCM> ~ —(InrpcAPRL0)". (4.11)
27"H T rg

The functional relationship between 6 and the other parameters of the flow are not
straightforward, especially in the case of non-spherical bubble splitting and collapse.

In the present study, the bubbles were sometimes observed to produce noise during
growth, splitting and collapse. The scaling analysis presented above is applicable to the
collapse of near spherical bubbles. However, we will use this scaling to compare the
relative magnitude of the measured growth and splitting noise with that of collapsing
bubbles. In the case of the elongated bubbles, we will scale the bubble volume with
the maximum radial dimension of the bubble, r;, 5, rather than the radius of a sphere
with the equivalent maximum bubble volume. Sub-bubbles that split from the ends
of the elongated bubbles will have dimensions closer to the axial diameter of the
parent bubble. Hence, r, ) is a better scale to determine the maximum volume of
the collapsing sub-bubble. We will assume that nzg =1 and 6 = 10ns for all the cases
examined in order to make a comparison of the impulse produced from growth,
splitting and collapse. The pressure difference AP is derived from the local cavitation
number, oc. .

Figure 18 presents the scaled acoustic impulse [ = 1,ry/(3nrpcAPr; ,0)"? for
noise produced by growing and splitting bubbles for cases T1 and T2 and for the
collapse noise for cases R1 and R2. Growth noise was detected when a small nucleus
convected into a region of higher tension before incepting, leading to a higher rate
of volume acceleration during growth. Detectable noise from splitting was rare, and
it was on the order of the noise produced by bubble growth. The impulse produced
by collapsing bubbles was about 10° times that of the growth and splitting impulses.
The impulses do not readily scale with oc.

Figure 19 plots the detected collapse impulse as a function of the maximum
radial bubble dimension, r, /rc. Also plotted are data from Oweis et al. (2004)
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FIGURE 18. The dimensionless acoustic impulse, / = I,,7/(1 pcAPcrj 1,6)'/, measured during
inception, splitting and collapsing of the cavitation bubbles as a function of the cavitation
number at the vortex core; inception noise of T1 (O), inception noise of T2 (O), collapse noise
of R1 (A), collapse noise of R2 (<), splitting noise of T1 and T2 (®); ng=1, 6 =10ns.
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FIGURE 19. The dimensionless acoustic impulse measured during bubble collapse as a function
of the dimensionless maximum bubble radius; collapse noise of R1 (A), collapse noise of R2
(¢). The data from Oweis et al. (2004) are also shown; laser bubble collapse without flow
[P, =10kPa (*), and 31kPa (%)]; bubbles formed in the core of the vortex o, =1.73 (<),
O0p =2.15 (>>), 04, =2.82 (+).

for the collapse of laser-induced bubbles in a vortex, and bubbles in quiescent flow.
The spherical bubbles produced in quiescent liquid produced impulses of the order
of 1, implying that these bubbles converted the highest fraction of their potential
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mechanical energy to radiated acoustic energy. Oweis et al. (2004) produced large
bubbles in the vortex by explosive growth of the laser-induced bubble. (Note that
the laser energy was sufficiently high to produce a vapour bubble even when the
vortex core pressure was greater than vapour pressure). The resulting bubbles that
were slightly deformed from a spherical shape (o, =2.15 and 2.82) produced similar
impulses. Laser-induced bubbles that were more elongated along the vortex core
(05 =1.73) had lower impulses of the order of 0.1 to 1. (The radii of these bubbles
were the equivalent spherical radii.) The highest impulses observed in the present
study were also of this order for bubbles with the smallest axial diameter bubbles.
Larger bubbles on average yielded impulses over an order of magnitude lower, usually
between 0.1 and 0.01. These data suggest that the collapse of larger, elongated bubbles
is less coherent and leads to lower magnitudes of volume accelerations and hence
noise emission. If the data in figure 19 were scaled with the maximum volume of the
highly elongated bubble, the acoustic impulses would decrease even further relative
to the near spherical bubbles.

5. Discussion and conclusion

The growth, splitting and collapse of single vortex cavitation bubbles were examined.
And, these processes were related to the noise emitted by the bubble. The radius of
the elongated cavitation bubbles was a fraction (<12 %) of the non-cavitating core
radius, while the bubbles could grow to large aspect ratios, with values larger than
50. The axial growth rates of the bubbles were scaled with the vortex core pressure,
and were larger in magnitude near inception and the final collapse. Bubble splitting
was on average associated with the start of bubble collapse.

The properties of the line vortex strongly determine the shape and dynamics of the
bubble, although non-cavitating vortex properties (i.e. the vortex strength and core
radius) and the cavitation numbers were not sufficient to collapse the data relating
to the bubble dimensions and dynamics. Instead, modest variations in the vortex
properties resulted in significantly changed bubble dynamics. A two-dimensional
model of the vortex cavitation bubble suggests that the final radius of the elongated
bubble may take on a range of values for a given set of initial conditions, depending on
the final value of the local tangential velocity near the bubble surface. Consequently,
the detailed, three-dimensional process of the bubble growth may have a significant
influence on the final bubble shape. Thus, the traditional scaling variables of vortex
cavitation (e.g. I'p,rc,oc, and the nucleus critical pressure) may be used to scale
inception of vortex cavitation, but are insufficient to scale the developed vortex
cavitation.

The noise produced by bubble growth, splitting, and collapse was examined. The
noise resulting from bubble growth was measured when very small nuclei convected
into a region of high liquid tension before inception. In these cases, the rapid rate
of volume acceleration produced an audible pulse. Conversely, larger nuclei would
begin to grow as soon as they were exposed to any tension, resulting in a reduced
rate of volume acceleration. The magnitude of the noise detected during growth and
splitting was similar, although the detection of splitting noise was not common. The
impulse produced upon collapse was typically four to five orders of magnitude larger
compared to the growth and splitting noise. The difference in noise produced by the
growth of large and small nuclei illustrate the significant influence that ‘water quality’
can play in the scaling of vortex cavitation.



Dynamics and noise emission of vortex cavitation bubbles 25

When scaling the collapse noise, only a portion of the collapsing bubble volume will
contribute to the production of an acoustic pulse, making scaling with the entire
bubble volume inappropriate. Moreover, the acoustic impulse produced by the collapse
of deformed cavitation bubbles is still significantly lower than the impulse produced
by the collapse of a spherical bubble of equivalent volume experiencing the same
external driving pressure. The collapse noise did not scale with the local cavitation
number. However, smaller bubbles produced relatively larger impulses, since these
bubbles retained a shape that was closer to a sphere.

In conclusion, (i) the inception and dynamics of elongated vortex cavitation bubbles
is a complex phenomenon that does not simply scale with the non-cavitating vortex
properties and cavitation number. Instead, the detailed processes of the initial bubble
growth can influence the dimensions of the elongated bubble. (ii) The detailed
processes of bubble inception, splitting and collapse all influence the potential of the
bubble to create an acoustic pulse (or pulses), and these processes can be influenced
by the original nuclei size and the time—pressure history that the bubble experiences.
The acoustic impulses did not scale with the conventional parameters, such as the
local cavitation number during collapse and bubble maximum volume. This makes
it difficult to derive universal relationships for the prediction and scaling of vortex
cavitation noise.

This work was supported by a grant from the Office of Naval Research under
Contract N00014-03-1-0430, Dr K.-H. Kim, program manager.
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